Competitive Evaluation of Planar Embedded Glass and Polymer Waveguides in Data Center Environments
نویسندگان
چکیده
Optical printed circuit board (OPCB) waveguide materials and fabrication methods have advanced considerably over the past 15 years, giving rise to two classes of embedded planar graded index waveguide based on polymer and glass. We consider the performance of these two emerging waveguide classes in view of the anticipated deployment in data center environments of optical transceivers based on directly modulated multimode short wavelength VCSELs against those based on longer wavelength single-mode photonic integrated circuits. We describe the fabrication of graded index polymer waveguides, using the Mosquito and photo-addressing methods, and graded index glass waveguides, using ion diffusion on thin glass foils. A comparative characterization was carried out on the waveguide classes to show a clear reciprocal dependence of the performance of different waveguide classes on wavelength. Furthermore, the different waveguide types were connected into an optically disaggregated data switch and storage system to evaluate and validate their suitability for deployment in future data center environments.
منابع مشابه
Hybrid Integrated Optics in Volume Holographic Photopolymer
Traditional planar lightwave circuits fabricated from lithographically-patterned waveguides in glasses, semi-conductors or polymers cannot accommodate the wide range of materials required by typical optical devices. In addition, such waveguides are nearly always defined in the material surface and thus can support only a limited density of interconnects and suffer poor performance at waveguide ...
متن کاملEvaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کاملAmplified spontaneous emission and optical gain measurements from pyrromethene 567--doped polymer waveguides and quasi-waveguides.
Amplified spontaneous emission from planar waveguides and quasi-waveguides based on Pyrromethene 567-doped poly(methyl methacrylate) thin films deposited onto quartz and glass substrates is investigated. Films with different thickness were prepared and pumped optically at 532 nm with pulses of up to 8 MW/cm(2). Pump thresholds for the onset of ASE emission, optical gains and losses were assesse...
متن کاملRapid Prototyping of Planar Infrared Waveguides
A method for creating planar As2S3 waveguides with a minimum of processing steps is proposed, and the resulting waveguides have been characterized. When the processing parameters are optimized, the losses are low enough for practical use. The authors demonstrate this by creating serpentine waveguides with multiple bends and lengths in excess of 23cm. Keywords-component; chalcogenide glass; opti...
متن کاملPolymer waveguide end facet roughness and optical input/output coupling loss for OPCB applications
Electro-optical printed circuit board technology (EOCB) based on integrated planar polymer optical waveguides has been the subject of research and development for many years to provide a cost viable, fully integrated system embedded optical interconnect solution, however a number of constraints of this technology have yet to be overcome. Optical coupling loss at the input and output of the wave...
متن کامل